1,915 research outputs found

    Neisseria meningitidis serogroup C sepsis and septic arthritis in an HIV-positive man

    Get PDF
    A patient with well-controlled HIV-1 infection presented with fever and rigors, a widespread maculopapular rash, and severe generalised arthralgia. Sepsis of unknown aetiology was diagnosed, and treatment with broad-spectrum antimicrobials commenced. Following initial clinical improvement, a right knee septic arthritis developed. Microscopy and culture of the joint aspirate were negative for organisms but 16S rDNA PCR identified Neisseria meningitidis DNA, subsequently verified as capsular genogroup C, thus confirming a diagnosis of disseminated meningococcal sepsis with secondary septic arthritis

    Simple, Fast and Accurate Implementation of the Diffusion Approximation Algorithm for Stochastic Ion Channels with Multiple States

    Get PDF
    The phenomena that emerge from the interaction of the stochastic opening and closing of ion channels (channel noise) with the non-linear neural dynamics are essential to our understanding of the operation of the nervous system. The effects that channel noise can have on neural dynamics are generally studied using numerical simulations of stochastic models. Algorithms based on discrete Markov Chains (MC) seem to be the most reliable and trustworthy, but even optimized algorithms come with a non-negligible computational cost. Diffusion Approximation (DA) methods use Stochastic Differential Equations (SDE) to approximate the behavior of a number of MCs, considerably speeding up simulation times. However, model comparisons have suggested that DA methods did not lead to the same results as in MC modeling in terms of channel noise statistics and effects on excitability. Recently, it was shown that the difference arose because MCs were modeled with coupled activation subunits, while the DA was modeled using uncoupled activation subunits. Implementations of DA with coupled subunits, in the context of a specific kinetic scheme, yielded similar results to MC. However, it remained unclear how to generalize these implementations to different kinetic schemes, or whether they were faster than MC algorithms. Additionally, a steady state approximation was used for the stochastic terms, which, as we show here, can introduce significant inaccuracies. We derived the SDE explicitly for any given ion channel kinetic scheme. The resulting generic equations were surprisingly simple and interpretable - allowing an easy and efficient DA implementation. The algorithm was tested in a voltage clamp simulation and in two different current clamp simulations, yielding the same results as MC modeling. Also, the simulation efficiency of this DA method demonstrated considerable superiority over MC methods.Comment: 32 text pages, 10 figures, 1 supplementary text + figur

    Vocation, Belongingness, and Balance: A Qualitative Study of Veterinary Student Well-Being

    Get PDF
    An elevated risk for suicide among veterinarians has stimulated research into the mental health of the veterinary profession, and more recently attention has turned to the veterinary student population. This qualitative study sought to explore UK veterinary students' perceptions and experiences of university life, and to consider how these may affect well-being. Semi-structured interviews were conducted with 18 students from a single UK school who were purposively selected to include perspectives from male, female, graduate-entry, standard-entry (straight from high school), and widening participation students across all 5 years of the program. Three main themes were identified: a deep-rooted vocation, navigating belongingness, and finding balance. Participants described a long-standing goal of becoming a veterinarian, with a determination reflected by often circuitous routes to veterinary school and little or no consideration of alternatives. Although some had been motivated by a love of animals, others were intrinsically interested in the scientific and problem-solving challenges of veterinary medicine. Most expressed strong feelings of empathy with animal owners. The issue of belongingness was central to participants' experiences, with accounts reflecting their efforts to negotiate a sense of belongingness both in student and professional communities. Participants also frequently expressed a degree of acceptance of poor balance between work and relaxation, with indications of a belief that this imbalance could be rectified later. This study helps highlight future avenues for research and supports initiatives aiming to nurture a sense of collegiality among veterinary students as they progress through training and into the profession

    Absence of ancient DNA in sub-fossil insect inclusions preserved in 'Anthropocene' Colombian copal.

    Get PDF
    Insects preserved in copal, the sub-fossilized resin precursor of amber, have potential value in molecular ecological studies of recently-extinct species and of extant species that have never been collected as living specimens. The objective of the work reported in this paper was therefore to determine if ancient DNA is present in insects preserved in copal. We prepared DNA libraries from two stingless bees (Apidae: Meliponini: Trigonisca ameliae) preserved in 'Anthropocene' Colombian copal, dated to 'post-Bomb' and 10,612±62 cal yr BP, respectively, and obtained sequence reads using the GS Junior 454 System. Read numbers were low, but were significantly higher for DNA extracts prepared from crushed insects compared with extracts obtained by a non-destructive method. The younger specimen yielded sequence reads up to 535 nucleotides in length, but searches of these sequences against the nucleotide database revealed very few significant matches. None of these hits was to stingless bees though one read of 97 nucleotides aligned with two non-contiguous segments of the mitochondrial cytochrome oxidase subunit I gene of the East Asia bumblebee Bombus hypocrita. The most significant hit was for 452 nucleotides of a 470-nucleotide read that aligned with part of the genome of the root-nodulating bacterium Bradyrhizobium japonicum. The other significant hits were to proteobacteria and an actinomycete. Searches directed specifically at Apidae nucleotide sequences only gave short and insignificant alignments. All of the reads from the older specimen appeared to be artefacts. We were therefore unable to obtain any convincing evidence for the preservation of ancient DNA in either of the two copal inclusions that we studied, and conclude that DNA is not preserved in this type of material. Our results raise further doubts about claims of DNA extraction from fossil insects in amber, many millions of years older than copal

    Complex urban environments provide Apis mellifera with a richer plant forage than suburban and more rural landscapes

    Get PDF
    Growth in the global development of cities, and increasing public interest in beekeeping, has led to increase in the numbers of urban apiaries. Towns and cities can provide an excellent diet for managed bees, with a diverse range of nectar and pollen available throughout a long flowering season, and are often more ecologically diverse than the surrounding rural environments. Accessible urban honeybee hives are a valuable research resource to gain insights into the diet and ecology of wild pollinators in urban settings. We used DNA metabarcoding of the rbcL and ITS2 gene regions to characterize the pollen community in Apis mellifera honey, inferring the floral diet, from 14 hives across an urban gradient around Greater Manchester, UK. We found that the proportion of urban land around a hive is significantly associated with an increase in the diversity of plants foraged and that invasive and non-native plants appear to play a critical role in the sustenance of urban bees, alongside native plant species. The proportion of improved grassland, typical of suburban lawns and livestock farms, is significantly associated with decreases in the diversity of plant pollen found in honey samples. These findings are relevant to urban landscape developers motivated to encourage biodiversity and bee persistence, in line with global bio-food security agendas

    Prioritising between direct observation of therapy and case-finding interventions for tuberculosis: use of population impact measures

    Get PDF
    BACKGROUND: Population impact measures (PIMs) have been developed as tools to help policy-makers with locally relevant decisions over health risks and benefits. This involves estimating and prioritising potential benefits of interventions in specific populations. Using tuberculosis (TB) in India as an example, we examined the population impact of two interventions: direct observation of therapy and increasing case-finding. METHODS: PIMs were calculated using published literature and national data for India, and applied to a notional population of 100 000 people. Data included the incidence or prevalence of smear-positive TB and the relative risk reduction from increasing case finding and the use of direct observation of therapy (applied to the baseline risks over the next year), and the incremental proportion of the population eligible for the proposed interventions. RESULTS: In a population of 100 000 people in India, the directly observed component of the Directly Observed Treatment, Short-course (DOTS) programme may prevent 0.188 deaths from TB in the next year compared with 1.79 deaths by increasing TB case finding. The costs of direct observation are (in international dollars) I5960andofcasefindingareI5960 and of case finding are I4839 or I31702andI31702 and I2703 per life saved respectively. CONCLUSION: Increasing case-finding for TB will save nearly 10 times more lives than will the use of the directly observed component of DOTS in India, at a smaller cost per life saved. The demonstration of the population impact, using simple and explicit numbers, may be of value to policy-makers as they prioritise interventions for their populations

    Genetic assessment of ex situ populations to aid species conservation and maintain heterozygosity in non-model species

    Get PDF
    The number of species classified by the IUCN as endangered or critically endangered is predicted to increase dramatically in the coming decades. During this time, we will also see a parallel rise in the number of captive populations of endangered species. Appropriate genetic management strategies must be implemented to avoid inbreeding depression and heterozygosity loss in these small ex situ populations. Despite strong conservation concern, genetic markers are typically unavailable for threatened species and must be developed, often as a new captive population is being established. These novel markers can then be used to assess the relatedness and diversity of the founding population, inform breeding programmes and make routine assessments after each captive generation; processes which should be standard practice when managing ex situ populations. Here we present a case study in the assessment of genetic health of a captive population of the endangered undulate ray (Raja undulata). Novel microsatellite markers were designed using a next-generation sequencing workflow and primer pairs amplifying eight polymorphic microsatellite loci characterised in 35 captive individuals. Sampling of live individuals used a minimally invasive method and the genotypes determined were used to evaluate the overall genetic diversity of the captive population, predict the relatedness of each pair of individuals and to monitor for changes in the rate of heterozygosity after the first captive generation. Our approach offers a useful roadmap for the rapid assessment of genetic health of ex situ elasmobranch populations, and is also applicable to any captive or wild population requiring genetic management

    The Tevatron at the Frontier of Dark Matter Direct Detection

    Get PDF
    Direct detection of dark matter (DM) requires an interaction of dark matter particles with nucleons. The same interaction can lead to dark matter pair production at a hadron collider, and with the addition of initial state radiation this may lead to mono-jet signals. Mono-jet searches at the Tevatron can thus place limits on DM direct detection rates. We study these bounds both in the case where there is a contact interaction between DM and the standard model and where there is a mediator kinematically accessible at the Tevatron. We find that in many cases the Tevatron provides the current best limit, particularly for light dark matter, below 5 GeV, and for spin dependent interactions. Non-standard dark matter candidates are also constrained. The introduction of a light mediator significantly weakens the collider bound. A direct detection discovery that is in apparent conflict with mono-jet limits will thus point to a new light state coupling the standard model to the dark sector. Mono-jet searches with more luminosity and including the spectrum shape in the analysis can improve the constraints on DM-nucleon scattering cross section.Comment: 20 pages, 8 figures, final version in JHE

    Formulation, inflammation, and RNA sensing impact the immunogenicity of self-amplifying RNA vaccines

    Get PDF
    To be effective, RNA vaccines require both in situ translation and the induction of an immune response to recruit cells to the site of immunization. These factors can pull in opposite directions with the inflammation reducing expression of the vaccine antigen. We investigated how formulation affects the acute systemic cytokine response to a self-amplifying RNA (saRNA) vaccine. We compared a cationic polymer (pABOL), a lipid emulsion (nanostructured lipid carrier, NLC), and three lipid nanoparticles (LNP). After immunization, we measured serum cytokines and compared the response to induced antibodies against influenza virus. Formulations that induced a greater cytokine response induced a greater antibody response, with a significant correlation between IP-10, MCP-1, KC, and antigen-specific antibody titers. We then investigated how innate immune sensing and signaling impacted the adaptive immune response to vaccination with LNP-formulated saRNA. Mice that lacked MAVS and are unable to signal through RIG-I-like receptors had an altered cytokine response to saRNA vaccination and had significantly greater antibody responses than wild-type mice. This indicates that the inflammation induced by formulated saRNA vaccines is not solely deleterious in the induction of antibody responses and that targeting specific aspects of RNA vaccine sensing might improve the quality of the response

    The what and where of adding channel noise to the Hodgkin-Huxley equations

    Get PDF
    One of the most celebrated successes in computational biology is the Hodgkin-Huxley framework for modeling electrically active cells. This framework, expressed through a set of differential equations, synthesizes the impact of ionic currents on a cell's voltage -- and the highly nonlinear impact of that voltage back on the currents themselves -- into the rapid push and pull of the action potential. Latter studies confirmed that these cellular dynamics are orchestrated by individual ion channels, whose conformational changes regulate the conductance of each ionic current. Thus, kinetic equations familiar from physical chemistry are the natural setting for describing conductances; for small-to-moderate numbers of channels, these will predict fluctuations in conductances and stochasticity in the resulting action potentials. At first glance, the kinetic equations provide a far more complex (and higher-dimensional) description than the original Hodgkin-Huxley equations. This has prompted more than a decade of efforts to capture channel fluctuations with noise terms added to the Hodgkin-Huxley equations. Many of these approaches, while intuitively appealing, produce quantitative errors when compared to kinetic equations; others, as only very recently demonstrated, are both accurate and relatively simple. We review what works, what doesn't, and why, seeking to build a bridge to well-established results for the deterministic Hodgkin-Huxley equations. As such, we hope that this review will speed emerging studies of how channel noise modulates electrophysiological dynamics and function. We supply user-friendly Matlab simulation code of these stochastic versions of the Hodgkin-Huxley equations on the ModelDB website (accession number 138950) and http://www.amath.washington.edu/~etsb/tutorials.html.Comment: 14 pages, 3 figures, review articl
    • …
    corecore